ProgramMaster Logo
Conference Tools for 2025 TMS Annual Meeting & Exhibition
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting 2025 TMS Annual Meeting & Exhibition
Symposium Materials Aging and Compatibility: Experimental and Computational Approaches to Enable Lifetime Predictions
Presentation Title Accelerated Oxidation of Epoxy Thermosets With Increased O2 Pressure
Author(s) Mathew Celina, Carl Erik Linde, Matija Barrett, Lisa Ko
On-Site Speaker (Planned) Carl Erik Linde
Abstract Scope Polymer oxidation is usually accelerated with temperature, which is therefore applied in nearly every experimental approach dealing with predictive materials aging. Because of this simple approach, we may tend to neglect that the effective concentration of oxygen also acts as a rate multiplier for oxidation, i.e., increasing the oxygen partial pressure in an aging environment accelerates oxidation. In this talk, we discuss the theoretical impact of increased partial pressure on diffusion-limited oxidation (DLO), as described in the general autooxidation scheme, and review epoxy oxidation to offer a broader overview of its behavior under increased O2 partial pressure. We also give examples of oxidation rates as a function of temperature and pressure for a few thermoset materials under moderately increased oxygen concentrations (up to 4 atm, or 20 times atmospheric O2), and discuss how the rate behavior affects the accelerated aging of these materials.
Proceedings Inclusion? Planned:
Keywords Polymers,

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

A Mean-Field Approach for High-Temperature Shape Memory Alloys
Accelerated Aging of Aluminum Alloys for Long-Term Predictions of Corrosion Under Atmospheric Conditions of Temperature and Relative Humidity
Accelerated Oxidation of Epoxy Thermosets With Increased O2 Pressure
Accelerating Computational Calculations of Galvanic Corrosion Using Machine Learning
Bimodal Microstructure Modeling due to Non-Isothermal Loading in Ni-Based Single-Crystal Superalloys via Phase-Field Method
Characterization of Localized Oxidation in Tantalum and Cracking Susceptibility at High Temperatures Using Auger Electron Spectroscopy
Characterization of Long Term Service Effect on Turbine Blade Alloy
Environmentally Assisted Corrosion Testing of 7xxx Series Aluminum to Create an SCC Susceptibility Profile for Temperature, Humidity, and Stress Through Accelerated Testing
High-Throughput Creep Characterization for Use in Accelerated Aging Prediction
J-44: Accelerated Aging and Lifetime Performance Predictions of Silicone Cushions Under Compression
J-45: Impacts of Aging Additively Manufactured Silicone Polymers in the Presence of Organic Solvents
J-62: Microstructure Influence on the Intergranular Corrosion of Aluminum Alloys by Integrating Experimental Data and Microstructure Incorporated Computational Modeling
Materials Compatibility Testing and Assessment for Materials Reliability
Modeling Corrosion: Efficient Models and Validation for Long Term Degradation
Predicting Compatibility and Aging at the System-Level With a Reaction, Sorption, Transport, and Chemo-Mechanics (ReSorT-M) Model
Predicting Electrochemical Responses Using Machine Learning
Predicting Photo-Oxidative Embrittlement of a Semicrystalline Thermoplastic From Micromechanical Damage
Research on Shape Optimization of Work Roll in Hot Rolling
Strain-Controlled High-Cycle Fatigue of Aged Solder Joints for High-Reliability Environments
Towards High-Throughput Materials Advancement: Thinking About Database Management in Our Studying-Polymers-On-A-Chip (SPOC) Platform

Questions about ProgramMaster? Contact programming@programmaster.org