ProgramMaster Logo
Conference Tools for Materials Science & Technology 2020
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting Materials Science & Technology 2020
Symposium Additive Manufacturing: Microstructure and Material Properties of Titanium-based Materials
Presentation Title Dynamic Transformations In AM Ti6Al4V Alloy
Author(s) Sabina Kumar, Rakesh Kamath, Yan Chen, Peeyush Nandwana, Suresh Babu
On-Site Speaker (Planned) Sabina Kumar
Abstract Scope A complex interaction of process parameters, geometry and scan strategies in Additive Manufacturing (AM), can bring about spatial and temporal transients, i.e., Σ T (x,y,z,time), within a part. Published literature focusses on fluctuating thermal cycles on the microstructure evolution. However, the microstructural variations have not been correlated to dynamic flow behavior due to the macro- and micro-scale phenomena, i.e., accumulated plastic strains brought about by large thermal gradients, transformational strains and crystallographic misfit strains. Therefore, we studied the mechanical response of Ti6Al4V alloys produced by AM under externally imposed controlled thermo-mechanical reversals using a GleebleŽ thermo-mechanical simulator. The stress-strain behaviors were correlated to phase fractions, lattice strains, and also information on crystallographic texture using neutron diffraction techniques at the VULCAN Beamline at SNS, ORNL followed by metallographic analysis. The results are discussed and rationalized based on theories of static and dynamic phase transformations.

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

Correlating Processing, Structure and Properties for Additively Manufactured Ti-6Al-4V
Dynamic Transformations In AM Ti6Al4V Alloy
Environmental Degradation of AM-fabricated Ti6Al4V Alloy
Fracture of additively manufactured Ti-6Al-4V under multiaxial loading: experiments and modeling
Influence of Different Post-printing Treatments on the In Vitro Biocompatibility of 3D Generated Titanium Plates
Mechanical properties, fracture surface and microstructure of additively manufactured Ti6Al4V
Microstructural Modeling of β to α Transformation Morphologies in Multi-layered Laser Wire Additively Manufactured Ti-6Al-4V Parts
Multiscale Mechanical Studies of Dual-phase Titanium Alloys Made by Additive Manufacturing
Study of Effects from Post-processing on the Fatigue Performances of Laser Powder Bed Fusion Built Parts Using Hydride-dehydride Ti-6Al-4V Powders
Study the Effect of Thermal Gradients on the Microstructure and Mechanical Properties of Electron Beam Melting Ti-6Al-4V Builds
Understanding Microstructure and Mechanical Property Variations in Lase-based Powder Bed Fusion of Ti-6Al-4V and their Heat Treatment Design

Questions about ProgramMaster? Contact programming@programmaster.org