ProgramMaster Logo
Conference Tools for 2025 TMS Annual Meeting & Exhibition
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting 2025 TMS Annual Meeting & Exhibition
Symposium Characterization of Materials through High Resolution Coherent Imaging
Presentation Title High Bandwidth Scanning X-Ray Microscopy
Author(s) David Alexander Shapiro
On-Site Speaker (Planned) David Alexander Shapiro
Abstract Scope Until recently, the speed of scanning x-ray microscopes has been limited by the brightness of synchrotron x-ray beams, the speed of x-ray detectors and the performance of custom scanning systems. With the realization of high coherent flux from diffraction limited storage rings it has become critical to implement high bandwidth scanning systems and novel imaging schemes to make use of the new x-ray beams. At the Advanced Light Source, we have developed a custom high bandwidth scanning system which can execute scans along arbitrary trajectories that are optimized for the maximum mechanical frequencies of the microscope. These scans minimize overhead and can generate up to 10000 resolution elements per second. We have also implemented a coherent full-field imaging scheme called Randomized Probe Imaging which will reach imaging speeds of 10^6 resolution elements per second with the upgraded source. Combined, these technologies will enable high impact operando microscopy.
Proceedings Inclusion? Planned:
Keywords Characterization, Nanotechnology, Computational Materials Science & Engineering

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

AI-Driven Workflow for Autonomous High-Resolution Scanning X-Ray Microscopy
Bragg Coherent Diffractive Imaging With Twisted X-Rays
Characterization of Crystalline Materials at the Atomic Scale with X-Ray Bragg Coherent Diffraction Imaging
Coherent x-Ray Diffraction Imaging Dedicated Beamlines at PLS-II and Korea-4GSR
Direct Reciprocal Space Detection of Microelectronic Defects Using Coherent X-Ray Diffraction and Unsupervised Machine Learning
Enhanced Mineral Characterization With 3D X-Ray CT and AI-Driven Imaging
Explanation of the High-Dielectric Constant of BaTiO3 Used in Multilayer Capacitors
High-Resolution X-Ray Imaging of Integrated Circuits
High Bandwidth Scanning X-Ray Microscopy
In-Situ/Operando Bragg Coherent X-Ray Diffraction Imaging for Catalysis Studies
ML-Guided Non-Destructive 3D Metrology of Functioning Devices With an X-Ray Laser
Nanoholotomography With Coded Apertures for Efficient Dynamic Imaging of Nanomaterials
Origin of Structural Degradation in Layered Oxide Cathode for Li-Ion Batteries
Physics-Informed Self-Supervised Learning of Structural Morphology Imaged by Scanning X-Ray Diffraction Microscopy
Probing Cryogenic Strain Evolution in SrTiO3 Using Multi-Reflection Bragg Coherent Diffraction Imaging
Rapid Reconstruction of the Full Strain Tensor via Coupled Phase Retrieval With Multipeak Bragg Coherent Diffraction Imaging
Real-Time Imaging of Subsurface Dislocation Dynamics
Simultaneous Reciprocal and Real Space X-Ray Imaging for Hierarchical Characterization of 3D Nano-Architected Metamaterials
Single-Exposure Elemental Differentiation and Texture-Sensitive Phase-Retrieval Imaging with a Neutron-Counting Microchannel-Plate Detector
Single-Shot X-Ray Imaging of Density in Laser Shocked Materials for Fusion Energy Studies
Synchrotron Ptychographic X-Ray Computed Tomography (PXCT) to Study Micro-Fabricated Fully Hybrid 3D Metal-Ceramic Metamaterials
Three-Dimensional Hard X-Ray Ptychographic Reflectometry Imaging on Extended Mesoscopic Surface Structures

Questions about ProgramMaster? Contact programming@programmaster.org